24 research outputs found

    The imposition of Cauchy data to the Teukolsky equation I: The nonrotating case

    Full text link
    Gravitational perturbations about a Kerr black hole in the Newman-Penrose formalism are concisely described by the Teukolsky equation. New numerical methods for studying the evolution of such perturbations require not only the construction of appropriate initial data to describe the collision of two orbiting black holes, but also to know how such new data must be imposed into the Teukolsky equation. In this paper we show how Cauchy data can be incorporated explicitly into the Teukolsky equation for non-rotating black holes. The Teukolsky function % \Psi and its first time derivative ∂tΨ\partial_t \Psi can be written in terms of only the 3-geometry and the extrinsic curvature in a gauge invariant way. Taking a Laplace transform of the Teukolsky equation incorporates initial data as a source term. We show that for astrophysical data the straightforward Green function method leads to divergent integrals that can be regularized like for the case of a source generated by a particle coming from infinity.Comment: 9 pages, REVTEX. Misprints corrected in formulas (2.4)-(2.7). Final version to appear in PR

    Quantum Vacuum Instability Near Rotating Stars

    Get PDF
    We discuss the Starobinskii-Unruh process for the Kerr black hole. We show how this effect is related to the theory of squeezed states. We then consider a simple model for a highly relativistic rotating star and show that the Starobinskii-Unruh effect is absent.Comment: 17 Pages, (accepted by PRD), (previously incorrect header files have been corrected

    Excitation of the odd-parity quasi-normal modes of compact objects

    Get PDF
    The gravitational radiation generated by a particle in a close unbounded orbit around a neutron star is computed as a means to study the importance of the ww modes of the neutron star. For simplicity, attention is restricted to odd parity (``axial'') modes which do not couple to the neutron star's fluid modes. We find that for realistic neutron star models, particles in unbounded orbits only weakly excite the ww modes; we conjecture that this is also the case for astrophysically interesting sources of neutron star perturbations. We also find that for cases in which there is significant excitation of quadrupole ww modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.

    An elliptical tiling method to generate a 2-dimensional set of templates for gravitational wave search

    Get PDF
    Searching for a signal depending on unknown parameters in a noisy background with matched filtering techniques always requires an analysis of the data with several templates in parallel in order to ensure a proper match between the filter and the real waveform. The key feature of such an implementation is the design of the filter bank which must be small to limit the computational cost while keeping the detection efficiency as high as possible. This paper presents a geometrical method which allows one to cover the corresponding physical parameter space by a set of ellipses, each of them being associated to a given template. After the description of the main characteristics of the algorithm, the method is applied in the field of gravitational wave (GW) data analysis, for the search of damped sine signals. Such waveforms are expected to be produced during the de-excitation phase of black holes -- the so-called 'ringdown' signals -- and are also encountered in some numerically computed supernova signals.Comment: Accepted in PR

    Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasi normal modes

    Get PDF
    We calculate the quasinormal modes and associated frequencies of the Banados, Zanelli and Teitelboim (BTZ) non-rotating black hole. This black hole lives in 2+1-dimensions in an asymptotically anti-de Sitter spacetime. We obtain exact results for the wavefunction and quasi normal frequencies of scalar, electromagnetic and Weyl (neutrino) perturbations.Comment: Latex, 14 page

    Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections

    Get PDF
    A particle of mass μ\mu moves on a circular orbit of a nonrotating black hole of mass MM. Under the restrictions μ/M≪1\mu/M \ll 1 and v≪1v \ll 1, where vv is the orbital velocity, we consider the gravitational waves emitted by such a binary system. We calculate E˙\dot{E}, the rate at which the gravitational waves remove energy from the system. The total energy loss is given by E˙=E˙∞+E˙H\dot{E} = \dot{E}^\infty + \dot{E}^H, where E˙∞\dot{E}^\infty denotes that part of the gravitational-wave energy which is carried off to infinity, while E˙H\dot{E}^H denotes the part which is absorbed by the black hole. We show that the black-hole absorption is a small effect: E˙H/E˙≃v8\dot{E}^H/\dot{E} \simeq v^8. We also compare the wave generation formalism which derives from perturbation theory to the post-Newtonian formalism of Blanchet and Damour. Among other things we consider the corrections to the asymptotic gravitational-wave field which are due to wave-propagation (tail) effects.Comment: ReVTeX, 17 page

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore